

ETAG 001 Parts 1 & 5 Option Anchoring in concrete

ETA-14/0104

pean Technical App According to TR023

st-installed rebar connectio ETA-13/0586

V200 עוגן כימי

אפוקסי אקרילט בחוזק מיוחד ובעל תקן סיסמי

דף מידע

תיאור

מערכת דבק 100% פולימר אפוקסי אקרילט בעל אחוז נמוך של נדיפים אשר מעניק יכולת הדבקות מצויינת לבטון סדוק / לא סדוק, המוזרק לתוך חור קידוח ומשמש כדי להחזיק בכוח רב מוט מתכת בעל הברגה למטרות שונות ..היום משמשים העוגנים באופן נרחב בבניית תעלות, הנדסה אזרחית וענף הבנייה. חיבור בטון חדש לישן מתאים לתקני עמידות ססמיים (רעידות אדמה

אחסנה

יש לאחסן את המוצר בין הטמפרטורות -15- +25 במקום יבש ומוצל עד ל12 חודשים מזמן היצור.

Health & Safety

For health and safety information please refer to the relevant Safety Data Sheet.

Base Materials	Features	Accessories	Uses/Applications
 Cracked concrete Uncracked concrete Solid & hollow masonry Hard natural stone Solid rock Voided stone or rock Approvals & Tests ETA according ETAG 001 Part 5 Option 1 for anchoring of threaded bars into cracked and uncracked concrete ETA according to TR023 for post-installed rebar connections 	 Anchors may be placed close to free edges Suitable for dry, wet & flooded holes Reduced drilling diameters i.e. M20 only requires a 22mm hole and M24 requires only a 26mm hole making it an economical injection system Variable embedment depths Available in co-axial cartridges (380; 400; 410ml), side by side cartridges (345; 825ml), and single piston foil pack cartridges (150; 160; 	 Dispenser guns Mixing nozzles Cleaning blow pump Cleaning brushes High flow mixing nozzles Extension tubes Resin stoppers Plastic sleeves 	 Structural applications in cracked and non cracked concrete Reinforcing & starter bars Suspended ventilation systems Safety barriers Machinery & heavy machinery Racking Rolling cranes
Tested according to LEED 2009 EQ c4.1, SCAQMD rule 1168 (2005)	170; 300; 550; 850ml) • Ratio of 10:1		

Product Data Sheet

Contents

- 1 Product Information
- 1 Description
- 1 Health & Safety
- 1 Base Materials
- 1 Features
- 1 -Accessories
- 1 Uses/Applications
- 1 -Approvals & Tests
- 3 Epoxy Acrylate Styrene Free (EASF-V) Working & Loading Times
- 3 Epoxy Acrylate Styrene Free (EASF-VE) Working & Loading Times
- 3 Epoxy Acrylate Styrene Free (EASF-VC) Working & Loading Times
- 4 Physical Properties
- 4 Chemical Resistance
- 5 Solid Substrate Installation Method
- 6 Installation Parameters of Threaded Bars
- 6 Installation Parameters of Reinforcing Bars Used as Anchors
- 6 Theoretical Number of Fixings Per Cartridge

7 Steel Failure Information - Threaded Bars

- 7 Characteristic resistance values to tension load
- 7 Characteristic resistance values to shear load

8 Using EASF-V/ EASF-VE/ EASF-VC with Threaded Bars (uncracked concrete)

- 8 Combined pullout and concrete cone failure in non-cracked concrete C20/25
- 8 Tension load calculations for combined concrete cone & pullout failure at various embedment depths

12 Using EASF-V/ EASF-VE/ EASF-VC with Threaded Bars (cracked concrete)

- 12 Combined pullout and concrete cone failure in cracked concrete C20/25
- 12 Tension load calculations for combined concrete cone & pullout failure at various embedment depths

16 Using EASF-V/ EASF-VE/ EASF-VC with Reinforcing Bars

- 16 Combined pullout and concrete cone failure in non-cracked concrete C20/25
- 16 Tension load calculations for combined concrete cone & pullout failure at various embedment depths

20 Using EASF-V/ EASF-VE with Post-installed Rebar Connections

21 Important Notes

Product Data Sheet

Note: Presented data relates to standard grade EASF-V Epoxy Acrylate Styrene Free. T Work is typical gel time at highest base material temperature in the range. T Load is set at the lowest base material temperature in the range.

Epoxy Acrylate Styrene Free עוגן כימי V200 Working & Loading Times

Resin cartridge Temperature	T Work	Base Material Temperature	T Load
+15°C to +20°C	15 minutes	+15°C to +20°C	5 hours
+20°C to +25°C	10 minutes	+20°C to +25°C	145 minutes
+25°C to +30°C	7.5 minutes	+25°C to +30°C	85 minutes
+30°C to +35°C	5 minutes	+30°C to +35°C	50 minutes
+35°C to +40°C	3.5 minutes	+35°C to +40°C	40 minutes

Note: Presented data relates to standard grade ימי V200 Epoxy Acrylate Styrene Free. T Work is typical gel time at highest base material temperature in the range. T Load is set at the lowest base material temperature in the range.

* Data not included in the ETA

Product Data Sheet

Physical Properties

Property		Unit	Value	Test Standard
Compressive Strongth	24 hours	psi (N/mm²)	72.3	
	7 days	psi (N/mm²)	77.8	
Compressive Medulus Strength	24 hours	psi (GN/m²)	5	ASTM D 695 @ +20 C
Compressive modulus Strength	7 days	psi (GN/m²)	7	
Tanaila Strangth	24 hours	psi (N/mm²)	13.5	
	7 days	psi (N/mm²)	15.2	
Tanaila Strangth Flangation at Drook	24 hours	0/	6	
Tensile Strength Elongation at Break	7 days	70	6.7	ASTM D 636 @ +20 C
Tanaila Madulua	24 hours	psi (GN/m²)	3.75	
	7 days	psi (GN/m²)	3.8	
	24 hours	psi (N/mm²)	29.3	
	7 days	psi (N/mm ²)	38.7	ASTM D 790 @ +20 C

Chemical Resistance

The chemical mortar has undergone extensive chemical resistance testing. The results are summarised in the table below.

Chemical Environment	Concentration	Result
Aqueous Solution Acetic Acid	10%	<
Acetone	100%	×
Aqueous Solution Aluminium Chloride	Saturated	<
Aqueous Solution Aluminium Nitrate	10%	~
Ammonia Solution	5%	<
Jet Fuel	100%	~
Benzene	100%	×
Benzoic Acid	Saturated	×
Benzyl Alcohol	100%	×
Sodium Hypochlorite Solution	5 - 15%	С
Butyl Alcohol	100%	С
Calcium Sulphate Aqueous Solution	Saturated	\checkmark
Carbon Monoxide	Gas	×
Carbon Tetrachloride	100%	×
Chlorine Water	Saturated	<
Chloro Benzene	100%	×
Citric Acid Aqueous Solution	Saturated	~
Cyclohexanol	100%	~
Diesel Fuel	100%	~
Diethylene Glycol	100%	×
Ethanol	95%	С
Ethanol Aqueous Solution	20%	С
Heptane	100%	✓

Chemical Environment	Concentration	Result
Hexane	100%	С
	10%	✓
Hydrochloric Acid	15%	✓
	25%	С
Hydrogen Sulphide Gas	100%	✓
Isoproyl Alcohol	100%	С
Linseed Oil	100%	✓
Lubricating Oil	100%	✓
Mineral Oil	100%	✓
Paraffin / Kerosene (Domestic)	100%	 ✓
Phenol Aqueous Solution	1%	×
Phosphoric Acid	50%	\checkmark
Potassium Hydroxide	10% / pH13	С
Sea Water	100%	✓
Styrene	100%	×
Sulphur Dioxide Solution	10%	\checkmark
Sulphur Dioxide (40°C)	5%	\checkmark
	10%	\checkmark
Sulphuric Acia	50%	~
Turpentine	100%	С
White Spirit	100%	\checkmark
Xylene	100%	×

✓ = Resistant to 75°C with at least 80% of physical properties retained.

C = Contact only to a maximum of 25° C.

× = Not Resistant

Product Data Sheet

Solid Substrate Installation Method

1. Drill the hole to the correct diameter and depth. This can be done with either a rotary percussion or rotary hammer drilling machine depending upon the substrate.

2. Thoroughly clean the hole in the following sequence using the 2K DF Brush with the required extensions and a source of clean compressed air. For holes of 400mm or less deep, a 2K Blow Pump may be used:

Blow Clean x2. Brush Clean x2. Blow Clean x2. Brush Clean x2. Blow Clean x2.

If the hole collects water, the current best practice is to remove standing water before cleaning the hole and injecting the resin. Ideally, the resin should be injected into a properly cleaned, dry hole. However, this product may also be used in a flooded hole.

- Select the appropriate static mixer nozzle for the installation, open the cartridge/foil pack and screw nozzle onto the mouth of the cartridge. Insert the cartridge into a good quality applicator.
- 4. Extrude the first part of the cartridge to waste until an even

colour has been achieved without streaking in the resin.

If necessary, cut the extension tube to the depth of the hole and push onto the end of the mixer nozzle, and (for rebars 16mm dia. or more) fit the correct resin stopper to the other end. Attach extension tubing and resin stopper.

Insert the mixer nozzle (resin stopper / extension tube if applicable) to the bottom of the hole. Begin to extrude the resin and slowly withdraw the mixer

nozzle from the hole ensuring that there are no air voids as the mixer nozzle is withdrawn. Fill the hole to approximately $\frac{1}{2}$ to $\frac{3}{4}$ full and withdraw the nozzle completely.

Insert the clean threaded bar, free from oil or other release agents, to the bottom of the hole using a back and forth twisting motion ensuring all the threads are thoroughly

7.

8.

coated. Adjust to the correct position within the stated working time (see table on page 4).

Any excess resin will be expelled from the hole evenly around the steel element showing that the hole is full.

This excess resin should be removed from around the mouth of the hole before it sets.

9. Leave the anchor to cure.

Do not disturb the anchor until the appropriate loading time, on page 4, has elapsed depending on the substrate conditions and ambient temperature.

10. Attach the fixture and tighten the nut to the recommended torque, Do not overtighten.

Product Data Sheet

Installation Parameters of Threaded Bars

Size			M8	M10	M12	M16	M20	M24	M27	M30
Nominal drill hole diameter	$Ød_0$	[mm]	10	12	14	18	22	26	30	35
Diameter of cleaning brush d _b	d _b	[mm]	14	14	20	20	29	29	40	40
Torque moment T _{inst}	T _{inst}	[Nm]	10	20	40	80	150	200	240	275
h _{ef,min} = 8d	h _{ef,min} = 8d									
Depth of drill hole h ₀	h _o	[mm]	64	80	96	128	160	192	216	240
Minimum edge distance c _{min}	C _{min}	[mm]	35	40	50	65	80	96	110	120
Minimum spacing s _{min}	S _{min}	[mm]	35	40	50	65	80	96	110	120
Minimum thickness of member h_{min}	h _{min}	[mm]	h _{ef} +	30 mn	n ≥ 100) mm		h _{ef} +	- 2d ₀	
h _{ef,max} = 20d										
Depth of drill hole h_0	h _o	[mm]	160	200	240	320	400	480	540	600
Minimum edge distance c _{min}	C _{min}	[mm]	80	100	120	160	200	240	270	300
Minimum spacing s _{min}	S _{min}	[mm]	80	100	120	160	200	240	270	300
Minimum thickness of member h _{min}	h _{min}	[mm]	h _{ef} +	30 mn	n ≥ 100	mm		h _{ef} +	- 2d ₀	

Installation Parameters of Reinforcing Bars Used as Anchors

Size			Ø8	Ø10	Ø12	Ø16	Ø20	Ø25	Ø32	
Nominal drill hole diameter	$Ød_0$	[mm]	12	14	16	20	25	32	40	
Diameter of cleaning brush $d_{\scriptscriptstyle b}$	d _b	[mm]	14	14	19	22	29	40	42	
h _{ef,min} = 8d	h _{ef,min} = 8d									
Depth of drill hole h ₀	h _o	[mm]	64	80	96	128	160	200	256	
Minimum edge distance c_{min}	C _{min}	[mm]	35	40	50	65	80	100	130	
Minimum spacing s _{min}	S _{min}	[mm]	35	40	50	65	80	100	130	
Minimum thickness of member \mathbf{h}_{\min}	h _{min}	[mm]	h _{ef} +	· 30 mn	n ≥ 100	mm		$h_{ef} + 2d_0$		
h _{ef,max} = 20d										
Depth of drill hole h ₀	h _o	[mm]	160	200	240	320	400	500	640	
Minimum edge distance c_{min}	C _{min}	[mm]	80	100	120	160	200	250	320	
Minimum spacing s _{min}	S _{min}	[mm]	80	100	120	160	200	250	320	
Minimum thickness of member \mathbf{h}_{\min}	h _{min}	[mm]	h _{ef} +	· 30 mm	n ≥ 100	mm		n _{ef} + 2d	0	

Theoretical Number of Fixings Per Cartridge

Applies to installations in solid substrates only

Contridero		M8	M10	M12	M16	M20	M24
Volume	h _{ef}	Drilling Ø 10mm	Drilling Ø 12mm	Drilling Ø 14mm	Drilling Ø 18mm	Drilling Ø 22mm	Drilling Ø 26mm
	8d	148	91	60	32	19	12
Ē	10d	118	72	48	26	15	9
410	STD	118	81	52	32	17	11
	12d	98	60	40	21	12	8
	8d	106	65	43	23	13	8
Ē	10d	85	52	34	18	11	7
300	STD	85	58	38	23	12	8
	12d	71	43	29	15	9	5

Note: Jobsite/contractor installations usually result in more resin being injected than the theoretical requirement resulting in lower number of fixings per cartridge. The reduction to the number of fixings per cartridge in practice is greater for smaller diameter holes and shallower embedment depths.

Product Data Sheet

Steel Failure Information - Threaded Bars

Characteristic resistance values to tension load

Steel Failure - Characteristic resistance

Size			M8	M10	M12	M16	M20	M24	M27	M30
Steel grade 4.6	N _{Rk,s}	[kN]	15	23	34	63	98	141	184	224
Partial safet y factor	γ _{Ms}	[-]				2	2			
Steel grade 5.8	$N_{Rk,s}$	[kN]	18	29	42	79	123	177	230	281
Partial safety factor	Ϋ́мs	[-]				1	.5			
Steel grade 8.8	$N_{Rk,s}$	[kN]	29	46	67	126	196	282	367	449
Partial safety factor	γ_{Ms}	[-]				1	.5			
Steel grade 10.9	N _{Rk,s}	[kN]	37	58	84	157	245	353	459	561
Partial safety factor	γ _{Ms}	[-]				1	.4			
Stainless steel grade A4-70	$N_{Rk,s}$	[kN]	26	41	59	110	172	247	321	393
Partial safety factor	γ_{Ms}	[-]				1	.9			
Stainless steel grade A4-80	N _{Rk,s}	[kN]	29	46	67	126	196	282	367	449
Partial safety factor	γ _{Ms}	[-]		1.6						
Stainless steel grade 1.4529	N _{Rk,s}	[kN]	26	41	59	110	172	247	321	393
Partial safety factor	Ϋ́Ms	[-]				1	.5			

Characteristic resistance values to shear load

Size			M8	M10	M12	M16	M20	M24	M27	M30
Steel grade 4.8	V _{Rk,s}	[kN]	7	12	17	31	49	71	92	112
Partial safety factor	γ _{Ms}	[-]				1.	67			
Steel grade 5.8	V _{Rk,s}	[kN]	9	15	21	39	61	88	115	140
Partial safety factor	γ _{Ms}	[-]				1.:	25			
Steel grade 8.8	V _{Rk,s}	[kN]	15	23	34	63	98	141	184	224
Partial safety factor	γ _{Ms}	[-]		1.25						
Steel grade 10.9	V _{Rk,s}	[kN]	18	29	42	79	123	177	230	281
Partial safety factor	γ _{Ms}	[-]				1	.5			
Stainless steel grade A4-70	V _{Rk,s}	[kN]	13	20	30	55	86	124	161	196
Partial safety factor	γ _{Ms}	[-]				1.	56			
Stainless steel grade A4-80	V _{Rk,s}	[kN]	15	23	34	63	98	141	184	224
Partial safety factor	γ _{Ms}	[-]				1.	33			
Stainless steel grade 1.4529	V _{Rk,s}	[kN]	13	20	30	55	86	124	161	196
Partial safety factor	γ _{Ms}	[-]				1.:	25			

Steel Failure - with lever arm										
Size			M8	M10	M12	M16	M20	M24	M27	M30
Steel grade 4.8	V _{Rk,s}	[kN]	15	30	52	133	260	449	666	900
Partial safety factor	γ_{Ms}	[-]				1.0	67			
Steel grade 5.8	V _{Rk,s}	[kN]	19	37	66	166	325	561	832	1125
Partial safety factor	γ_{Ms}	[-]				1.2	25			
Steel grade 8.8	V _{Rk,s}	[kN]	30	60	105	266	519	898	1332	1799
Partial safety factor	γ_{Ms}	[-]				1.2	25			
Steel grade 10.9	V _{Rk,s}	[kN]	37	75	131	333	649	1123	1664	2249
Partial safety factor	γ_{Ms}	[-]				1.	50			
Stainless steel grade A4-70	V _{Rk,s}	[kN]	26	52	92	233	454	786	1165	1574
Partial safety factor	γ_{Ms}	[-]				1.	56			
Stainless steel grade A4-80	V _{Rk,s}	[kN]	30	60	105	266	519	898	1332	1799
Partial safety factor	γ_{Ms}	[-]				1.:	33			
Stainless steel grade 1.4529	V _{Rk,s}	[kN]	26	52	92	233	454	786	1165	1574
Partial safety factor	γ_{Ms}	[-]				1.2	25			
Concrete pryout failure										
Factor k from TR 029 Design of bonded anchors pt 5.2.3.3						2	2			
Partial safety factor	γ_{Ms}	[-]				1.	5			

Product Data Sheet

Using עוגן כימי V200 with Threaded Bars Combined pullout and concrete cone failure in non-cracked concrete C20/25

Size			M8	M10	M12	M16	M20	M24	M27	M30
Characteristic bond resistance in non-cracked concrete										
Characteristic bond resistance dry/wet concrete	$\tau_{\scriptscriptstyle Rk}$	[N/mm ²]	10	9.5	9.5	9.0	8.5	8.0	6.5	5.5
Partial safety factor	γ _{Mc}	[-]			1	.8			2	.1

Tension load calculations for combined concrete cone & pullout failure at various embedment depths using threaded rods in dry / wet, uncracked, C20/25 concrete. Temperature range -40°C to +80°C.

Droport/	Symbol	Lipit	t		Anchor Size					
	Symbol	Unit	M8	M10	M12	M16	M20	M24	M27	M30
Effective Embedment Depth = 8d	h _{ef}	mm	64	80	96	128	160	192	216	240
Characteristic Load (Combined Concrete Cone & Pullout Failure)	N ⁰ _{Rk,p}	kN	16.08	23.88	34.38	57.91	85.45	115.81	119.09	124.41
Partial Safety Factor	γ _{Мс}	-	1.80	1.80	1.80	1.80	1.80	1.80	2.10	2.10
Effective Embedment Depth = 10d	h _{ef}	mm	80	100	120	160	200	240	270	300
Characteristic Load (Combined Concrete Cone & Pullout Failure)	N ⁰ _{Rk,p}	kN	20.11	29.85	42.98	72.38	106.81	144.76	148.86	155.51
Partial Safety Factor	γ _{Мс}	-	1.80	1.80	1.80	1.80	1.80	1.80	2.10	2.10
Effective Embedment Depth = STD	h _{ef}	mm	80	90	110	128	170	210	270	300
Characteristic Load (Combined Concrete Cone & Pullout Failure)	N ⁰ _{Rk,p}	kN	20.11	26.86	39.40	57.91	90.79	126.67	148.86	155.51
Partial Safety Factor	γ _{Mc}	-	1.80	1.80	1.80	1.80	1.80	1.80	2.10	2.10
Effective Embedment Depth = 12d	h _{ef}	mm	96	120	144	192	240	288	324	360
Characteristic Load (Combined Concrete Cone & Pullout Failure)	N ⁰ _{Rk,p}	kN	24.13	35.81	51.57	86.86	128.18	173.72	178.64	186.61
Partial Safety Factor	γ _{Mc}	-	1.80	1.80	1.80	1.80	1.80	1.80	2.10	2.10
Effective Embedment Depth = 14d	h _{ef}	mm	112	140	168	224	280	336	378	420
Characteristic Load (Combined Concrete Cone & Pullout Failure)	N ⁰ _{Rk,p}	kN	28.15	41.78	60.17	101.34	149.54	202.67	208.41	217.71
Partial Safety Factor	γ _{Mc}	-	1.80	1.80	1.80	1.80	1.80	1.80	2.10	2.10
Effective Embedment Depth = 16d	h _{ef}	mm	128	160	192	256	320	384	432	480
Characteristic Load (Combined Concrete Cone & Pullout Failure)	N ⁰ _{Rk,p}	kN	32.17	47.75	68.76	115.81	170.90	231.62	238.18	248.81
Partial Safety Factor	γ _{Mc}	-	1.80	1.80	1.80	1.80	1.80	1.80	2.10	2.10
Effective Embedment Depth = 18d	h _{ef}	mm	144	180	216	288	360	432	486	540
Characteristic Load (Combined Concrete Cone & Pullout Failure)	N ⁰ _{Rk,p}	kN	36.19	53.72	77.36	130.29	192.27	260.58	267.96	279.92
Partial Safety Factor	γ _{Mc}	-	1.80	1.80	1.80	1.80	1.80	1.80	2.10	2.10
Effective Embedment Depth = 20d	h _{ef}	mm	160	200	240	320	400	480	540	600
Characteristic Load (Combined Concrete Cone & Pullout Failure)	N ⁰ _{Rk,p}	kN	40.21	59.69	85.95	144.76	213.63	289.53	297.73	311.02
Partial Safety Factor	γ _{Mc}	-	1.80	1.80	1.80	1.80	1.80	1.80	2.10	2.10

^{1.} Characteristic loads are valid for combined concrete cone and pullout failure as defined by TR029 only. All other failure modes, including steel failure, detailed in TR029 as well as including

² Characteristic loads are valid for single anchors without close edge, anchor spacing or eccentric loading considerations.
 ³ Tabulated values are valid for temperture range -40°C to +80°C (Max LTT = +50°C; Max STT = +80°C).
 ⁴ Tabulated values are only valid for the installation conditions stated. Other conditions, such as different temperature ranges, may affect the performance of the product.
 ⁵ Long term temperatures are those that remain roughly constant over prolonged periods. Short term temperatures occur over brief intervals, eg: diurnal cycling.

The compressive strength of the concrete (f_{excube}) is assumed to be 25 N/mm² for C20/25 concrete. Tabulated values assume that the geometry of the anchor(s) and concrete member is sufficient to avoid splitting failure.

Product Data Sheet

Tension load calculations for combined concrete cone & pullout failure at 8d embedment depth

using threaded rods in dry / wet, uncracked, C20/25 concrete. Temperature range -40°C to +80°C.

Property	Symbol	Linit	Anchor Size								
Floperty	Symbol	Unit	M8	M10	M12	M16	M20	M24	M27	M30	
Nominal Anchor Diameter	d	mm	8	10	12	16	20	24	27	30	
Characteristic Bond Strength	$ au_{\scriptscriptstyleRk}$	N/mm ²	10.00	9.50	9.50	9.00	8.50	8.00	6.50	5.50	
Effective Embedment Depth	h _{ef}	mm	64	80	96	128	160	192	216	240	
Characteristic Load (Combined Concrete Cone and Pullout Failure)	N ⁰ _{Rk,p}	kN	16.08	23.88	34.38	57.91	85.45	115.81	119.09	124.41	
Partial Safety Factor	γмс	-	1.80	1.80	1.80	1.80	1.80	1.80	2.10	2.10	
Characteristic Anchor Spacing (Splitting Failure)	S _{cr,sp}	mm	192	240	288	384	480	576	648	720	
Characteristic Edge Distance (Splitting Failure)	C _{cr,sp}	mm	96	120	144	192	240	288	324	360	
Characteristic Anchor Spacing (Combined Concrete Cone and Pullout Failure)	S _{cr,Np}	mm	185	225	270	351	426	496	503	514	
Characteristic Edge Distance (Combined Concrete Cone and Pullout Failure)	C _{cr,Np}	mm	92	113	135	175	213	248	251	257	

Characteristic loads are valid for combined concrete cone and pullout failure as defined by TR029 only. All other failure modes, including steel failure, detailed in TR029 as well as including

combined effects of tension and shear, must be considered in accordance with TR029.

Characteristic loads are valid for single anchors without close edge, anchor spacing or eccentric loading considerations.

Tabulated values are valid for temperture range -40°C to +80°C (Max LTT = $+50^{\circ}$ C; Max STT = +80°C). Tabulated values are only valid for the installation conditions stated. Other conditions, such as different temperature ranges, may affect the performance of the product.

Long term temperatures are those that remain roughly constant over prolonged periods. Short term temperatures occur over brief intervals, eg: diurnal cycling

The compressive strength of the concrete (f_{ck,cub}) is assumed to be 25 N/m² for C20/25 concrete.
 Tabulated values assume that the geometry of the anchor(s) and concrete member is sufficient to avoid splitting failure.

Reduction factors for close edge: Combined concrete cone and pullout failure

	\bigtriangledown		Anchor Size										
	ert	M8	M10	M12	M16	M20	M24	M27	M30				
	35	0.56											
	40	0.59	0.55										
	50	0.66	0.60	0.56		NO	TPre						
	60	0.74	0.66	0.60			' <i>ER</i>	MISSIN					
	65	0.78	0.69	0.63	0.56			OIB	LE				
	70	0.82	0.72	0.65	0.57								
$\widehat{}$	80	0.90	0.78	0.70	0.61	0.56							
E	90	0.98	0.85	0.75	0.65	0.59							
<u>د</u>	92	N/R	0.86	0.76	0.65	0.59							
C	96		0.89	0.78	0.67	0.61	0.57						
é.	100		0.91	0.80	0.68	0.62	0.58						
2	110		0.98	0.86	0.72	0.65	0.60	0.60					
ita	113		N/R	0.87	0.73	0.66	0.61	0.61					
js	120			0.91	0.76	0.68	0.63	0.62	0.62				
	130			0.97	0.80	0.71	0.65	0.65	0.64				
ğ	135			N/R	0.82	0.73	0.67	0.66	0.65				
Щ	140				0.85	0.74	0.68	0.68	0.67				
e,	150				0.89	0.78	0.71	0.70	0.69				
ő	160				0.93	0.81	0.74	0.73	0.72				
Ö	170				0.98	0.84	0.76	0.76	0.75				
	175				N/R	0.86	0.78	0.77	0.76				
	180					0.88	0.79	0.78	0.77				
	200		NOP			0.95	0.85	0.84	0.83				
	213		- KE	DUCT		N/R	0.89	0.88	0.87				
	220				UN _		0.91	0.90	0.89				
	240						0.97	0.96	0.95				
	248						N/R	0.99	0.97				
	251							N/R	0.98				
	257								N/R				

Tabulated values are only applicable for instances where combined concrete cone and pullout failure is the controlling failure mode as described by TR029. All other failure modes must be considered and different reduction factors may apply. Tabulated values are based on a single anchor with a single close edge. Tabulated values

must not be used if multiple close edges exist. Anchors with geometry different to that defined in the above table must be considered

separately and the tabulated values must not be used.

Interpolation is allowed. 5.

Tabulated values assume that the geometry of the anchor(s) and concrete member is sufficient to avoid splitting failure.

⁶ Close edge distances must exceed or be equal to the minimum close edge distance (C_{min}) as defined in the ETA

Reduction factors for anchor spacing: Combined concrete cone and pullout failure

	\smallsetminus		Anchor Size								
	ert	M8	M10	M12	M16	M20	M24	M27	M30		
	35	0.67									
	40	0.68	0.65								
	50	0.70	0.67	0.65		NOT					
	60	0.72	0.69	0.66			PERM	100			
	65	0.73	0.70	0.67	0.63			'SSIBL	Ē		
	70	0.74	0.71	0.68	0.64				~		
E	80	0.77	0.73	0.69	0.65	0.63					
E	90	0.79	0.75	0.71	0.67	0.64					
S	96	0.80	0.76	0.72	0.67	0.64	0.62				
ດົ	100	0.81	0.77	0.73	0.68	0.65	0.63				
õ	110	0.84	0.79	0.74	0.69	0.66	0.64	0.66			
tar	120	0.86	0.81	0.76	0.70	0.67	0.65	0.67	0.68		
)is	125	0.87	0.82	0.77	0.71	0.68	0.65	0.67	0.68		
	150	0.92	0.86	0.81	0.74	0.70	0.67	0.69	0.70		
ů,	175	0.98	0.91	0.85	0.78	0.73	0.70	0.71	0.72		
aci	185	N/R	0.93	0.87	0.79	0.74	0.71	0.72	0.73		
ğ	200		0.95	0.89	0.81	0.76	0.72	0.74	0.74		
5	225		N/R	0.93	0.84	0.78	0.75	0.76	0.76		
2	250			0.97	0.87	0.81	0.77	0.78	0.79		
p	270			N/R	0.90	0.83	0.79	0.80	0.80		
A	275				0.90	0.84	0.79	0.80	0.81		
	300				0.94	0.87	0.82	0.83	0.83		
	351	N			N/R	0.92	0.86	0.87	0.87		
	400	14	RED			0.97	0.91	0.91	0.91		
	426			JCTION		N/R	0.94	0.93	0.93		
	450						0.96	0.96	0.95		
	496						N/R	0.99	0.99		
	503							N/R	0.99		
	514								N/R		

Tabulated values are only applicable for instances where combined concrete cone and pullout failure is the controlling failure mode as described by TR029. All other failure modes

must be considered and different reduction factors may apply. Tabulated values are based on a group of 2 anchors with the geometry defined by "S" and

" S_{crNp} " but without close edge considerations. ³ Anchors with geometry different to that defined in the above table must be considered separately and the tabulated values must not be used.

Interpolation is allowed.

Tabulated values assume that the geometry of the anchor(s) and concrete member is sufficient to avoid splitting failure

 $^{\rm 6}$ Anchor spacing distances must exceed or be equal to the minimum anchor spacing (S_{\rm min}) as defined in the ETA.

Product Data Sheet

Tension load calculations for combined concrete cone & pullout failure at std embedment depth

using threaded rods in dry / wet, uncracked, C20/25 concrete. Temperature range -40°C to +80°C.

Property	Symbol	Linit	Anchor Size									
Fioperty	Symbol	Unit	M8	M10	M12	M16	M20	M24	M27	M30		
Nominal Anchor Diameter	d	mm	8	10	12	16	20	24	27	30		
Characteristic Bond Strength	$ au_{\scriptscriptstyleRk}$	N/mm ²	10.00	9.50	9.50	9.00	8.50	8.00	6.50	5.50		
Effective Embedment Depth	h _{ef}	mm	80	90	110	128	170	210	270	300		
Characteristic Load (Combined Concrete Cone and Pullout Failure)	N ⁰ _{Rk,p}	kN	20.11	26.86	39.40	57.91	90.79	126.67	148.86	155.51		
Partial Safety Factor	γмс	-	1.80	1.80	1.80	1.80	1.80	1.80	2.10	2.10		
Characteristic Anchor Spacing (Splitting Failure)	S _{cr,sp}	mm	240	270	330	384	510	630	810	900		
Characteristic Edge Distance (Splitting Failure)	C _{cr,sp}	mm	120	135	165	192	255	315	405	450		
Characteristic Anchor Spacing (Combined Concrete Cone and Pullout Failure)	S _{cr,Np}	mm	185	225	270	351	426	496	503	514		
Characteristic Edge Distance (Combined Concrete Cone and Pullout Failure)	C _{cr,Np}	mm	92	113	135	175	213	248	251	257		

1. Characteristic loads are valid for combined concrete cone and pullout failure as defined by TR029 only. All other failure modes, including steel failure, detailed in TR029 as well as including

combined effects of tension and shear, must be considered in accordance with TR029.

Characteristic loads are valid for single anchors without close edge, anchor spacing or eccentric loading considerations. Tabulated values are valid for temperture range -40°C to +80°C (Max LTT = $+50^{\circ}$ C; Max STT = $+80^{\circ}$ C). Tabulated values are only valid for the installation conditions stated. Other conditions, such as different temperature ranges, may affect the performance of the product.

Long term temperatures are those that remain roughly constant over prolonged periods. Short term temperatures occur over brief intervals, eg: diurnal cycling.
 The compressive strength of the concrete (f_{eccube}) is assumed to be 25 N/mm² for C20/25 concrete.
 Tabulated values assume that the geometry of the anchor(s) and concrete member is sufficient to avoid splitting failure.

Reduction factors for close edge: Combined concrete cone and pullout failure

			Anchor Size								
	ert	M8	M10	M12	M16	M20	M24	M27	M30		
	40	0.59									
	45	0.63	0.57								
	50	0.66	0.60			NO	The				
	55	0.70	0.63	0.58			PERI	ALC: N			
	60	0.74	0.66	0.60				"08/B	F		
	65	0.78	0.69	0.63	0.56						
	70	0.82	0.72	0.65	0.57						
Ĕ	80	0.90	0.78	0.70	0.61						
Ĕ	85	0.94	0.81	0.72	0.63	0.57					
C	90	0.98	0.85	0.75	0.65	0.59					
۵Ĵ	92	N/R	0.86	0.76	0.65	0.59					
Õ	100		0.91	0.80	0.68	0.62					
ta	105		0.95	0.83	0.70	0.63	0.59				
Dis	110		0.98	0.86	0.72	0.65	0.60				
	113		N/R	0.87	0.73	0.66	0.61				
ğ	120			0.91	0.76	0.68	0.63				
ы	130			0.97	0.80	0.71	0.65				
e U	135			N/R	0.82	0.73	0.67	0.66			
SO	140				0.85	0.74	0.68	0.68			
Ö	150				0.89	0.78	0.71	0.70	0.69		
	160				0.93	0.81	0.74	0.73	0.72		
	170				0.98	0.84	0.76	0.76	0.75		
	175				N/R	0.86	0.78	0.77	0.76		
	200					0.95	0.85	0.84	0.83		
	213		NOR			N/R	0.89	0.88	0.87		
	225			UUCT			0.93	0.92	0.90		
	248						N/R	0.99	0.97		
	251							N/R	0.98		
	257								N/R		

Tabulated values are only applicable for instances where combined concrete cone and pullout failure is the controlling failure mode as described by TR029. All other failure modes must be considered and different reduction factors may apply. Tabulated values are based on a single anchor with a single close edge. Tabulated values

must not be used if multiple close edges exist. Anchors with geometry different to that defined in the above table must be considered

З. separately and the tabulated values must not be used.

Interpolation is allowed. 5.

Tabulated values assume that the geometry of the anchor(s) and concrete member is sufficient to avoid splitting failure.

⁶ Close edge distances must exceed or be equal to the minimum close edge distance (C_{min}) as defined in the ETA

Reduction factors for anchor spacing: Combined concrete cone and pullout failure

	\smallsetminus		Anchor Size									
	$\left \right\rangle$	M8	M10	M12	M16	M20	M24	M27	M30			
	40	0.69										
	45	0.70	0.67									
	50	0.71	0.68			No	-					
	55	0.72	0.69	0.66			PERM	110-				
	60	0.73	0.70	0.67				"SSIB	F			
Ē	65	0.74	0.71	0.68	0.63							
LU LU	70	0.75	0.72	0.69	0.64							
L)	80	0.78	0.73	0.70	0.65							
S	85	0.79	0.74	0.71	0.66	0.64						
é	90	0.80	0.75	0.72	0.67	0.64						
nc	100	0.82	0.77	0.73	0.68	0.65						
sta	105	0.83	0.78	0.74	0.69	0.66	0.64					
Ö	125	0.87	0.82	0.77	0.71	0.68	0.66					
δ	135	0.90	0.84	0.79	0.72	0.69	0.67	0.69				
Li	150	0.93	0.87	0.81	0.74	0.71	0.68	0.70	0.71			
ga	175	0.98	0.91	0.85	0.78	0.73	0.70	0.73	0.73			
Š	185	N/R	0.93	0.87	0.79	0.74	0.71	0.73	0.74			
J	200		0.96	0.89	0.81	0.76	0.73	0.75	0.75			
Ę	225		N/R	0.93	0.84	0.79	0.75	0.77	0.77			
ŭ	270			N/R	0.90	0.84	0.79	0.81	0.81			
4	300				0.94	0.87	0.82	0.83	0.83			
	351				N/R	0.92	0.87	0.88	0.87			
	400					0.97	0.91	0.92	0.91			
	426		NOPE			N/R	0.94	0.94	0.93			
	450			DUCTI			0.96	0.96	0.95			
	496						N/R	0.99	0.99			
	503							N/R	0.99			
	514								N/R			

Tabulated values are only applicable for instances where combined concrete cone and pullout failure is the controlling failure mode as described by TR029. All other failure modes must be considered and different reduction factors may apply.

Tabulated values are based on a group of 2 anchors with the geometry defined by "S" and "S_{cr.Np}" but without close edge considerations.

^{3.} Anchors with geometry different to that defined in the above table must be considered separately and the tabulated values must not be used

Interpolation is allowed.

⁵. Tabulated values assume that the geometry of the anchor(s) and concrete member is sufficient to avoid splitting failure

Anchor spacing distances must exceed or be equal to the minimum anchor spacing (S_{min}) as defined in the FTA

Product Data Sheet

Tension load calculations for combined concrete cone & pullout failure at 20d embedment depth

using threaded rods in dry / wet, uncracked, C20/25 concrete. Temperature range -40°C to +80°C.

Property	Symbol	Linit	Anchor Size								
	Symbol	Unit	M8	M10	M12	M16	M20	M24	M27	M30	
Nominal Anchor Diameter	d	mm	8	10	12	16	20	24	27	30	
Characteristic Bond Strength	$ au_{\scriptscriptstyleRk}$	N/mm ²	10.00	9.50	9.50	9.00	8.50	8.00	6.50	5.50	
Effective Embedment Depth	h _{ef}	mm	160	200	240	320	400	480	540	600	
Characteristic Load (Combined Concrete Cone and Pullout Failure)	N ⁰ _{Rk,p}	kN	40.21	59.69	85.95	144.76	213.63	289.53	297.73	311.02	
Partial Safety Factor	γмс	-	1.80	1.80	1.80	1.80	1.80	1.80	2.10	2.10	
Characteristic Anchor Spacing (Splitting Failure)	S _{cr,sp}	mm	480	600	720	960	1200	1440	1620	1800	
Characteristic Edge Distance (Splitting Failure)	C _{cr,sp}	mm	240	300	360	480	600	720	810	900	
Characteristic Anchor Spacing (Combined Concrete Cone and Pullout Failure)	S _{cr,Np}	mm	185	225	270	351	426	496	503	514	
Characteristic Edge Distance (Combined Concrete Cone and Pullout Failure)	C _{cr,Np}	mm	92	113	135	175	213	248	251	257	

Characteristic loads are valid for combined concrete cone and pullout failure as defined by TR029 only. All other failure modes, including steel failure, detailed in TR029 as well as including

combined effects of tension and shear, must be considered in accordance with TR029.

Characteristic loads are valid for single anchors without close edge, anchor spacing or eccentric loading considerations.

Tabulated values are valid for temperture range -40°C to +80°C (Max LTT = $+50^{\circ}$ C; Max STT = +80°C). Tabulated values are only valid for the installation conditions stated. Other conditions, such as different temperature ranges, may affect the performance of the product.

Long term temperatures are those that remain roughly constant over prolonged periods. Short term temperatures occur over brief intervals, eg: diurnal cycling

The compressive strength of the concrete (r_{occus}) is assumed to be 25 N/m² for C20/25 concrete. Tabulated values assume that the geometry of the anchor(s) and concrete member is sufficient to avoid splitting failure. 7.

Reduction factors for close edge: Combined concrete cone and pullout failure

Tabulated values are only applicable for instances where combined concrete cone and pullout failure is the controlling failure mode as described by TR029. All other failure modes must be considered and different reduction factors may apply

Tabulated values are based on a single anchor with a single close edge. Tabulated values must not be used if multiple close edges exist.

З. Anchors with geometry different to that defined in the above table must be considered separately and the tabulated values must not be used.

Interpolation is allowed.

5. Tabulated values assume that the geometry of the anchor(s) and concrete member is

sufficient to avoid splitting failure. Close edge distances must exceed or be equal to the minimum close edge distance (C_{min})

as defined in the ETA

Reduction factors for anchor spacing: Combined concrete cone and pullout failure

	\smallsetminus				Ancho	r Size			
	ert	M8	M10	M12	M16	M20	M24	M27	M30
	80	0.79							
	90	0.81							
	100	0.83	0.79			No			
	110	0.85	0.81			140	TPFP		
E	120	0.87	0.83	0.79			-N	MISSID	
<u> </u>	130	0.89	0.85	0.81				-iD	LE
S	140	0.91	0.86	0.82					
ໝົ	150	0.93	0.88	0.83					
ğ	160	0.95	0.90	0.85	0.79				
tai	170	0.97	0.91	0.86	0.80				
isi	185	N/R	0.94	0.88	0.82				
	200		0.96	0.90	0.84	0.79			
n C	225		N/R	0.94	0.86	0.82			
g	240			0.96	0.88	0.83	0.80		
ğ	250			0.97	0.89	0.84	0.81		
5	270			N/R	0.91	0.86	0.82	0.83	
p	275				0.92	0.86	0.83	0.83	
þ	300				0.95	0.89	0.85	0.85	0.85
Ā	351				N/R	0.93	0.89	0.89	0.89
	400		NOR			0.98	0.93	0.92	0.92
	426		.0 R	Duct		N/R	0.95	0.94	0.94
	450			301	ON		0.96	0.96	0.96
	496						N/R	0.99	0.99
	503							N/R	0.99
	514								N/R

Tabulated values are only applicable for instances where combined concrete cone and pullout failure is the controlling failure mode as described by TR029. All other failure modes must be considered and different reduction factors may apply.

Tabulated values are based on a group of 2 anchors with the geometry defined by "S" and

 S_{cr,N_0} but without close edge considerations. Anchors with geometry different to that defined in the above table must be considered separately and the tabulated values must not be used

Interpolation is allowed.

Tabulated values assume that the geometry of the anchor(s) and concrete member is sufficient to avoid splitting failure.

Anchor spacing distances must exceed or be equal to the minimum anchor spacing (S_{min}) as defined in the ETA.

Product Data Sheet

Using עוגן כימי V200 with Threaded Bars Combined pullout and concrete cone failure cracked concrete C20/25

Size			M10	M12	M16	M20	M24
Characteristic bond resistance in non-cracked concrete							
Characteristic bond resistance dry/wet concrete	$ au_{\scriptscriptstyleRk}$	[N/mm²]	4.5	4.5	4.5	4.0	4.0
Partial safety factor	γмс	[-]			1.8		

Tension load calculations for combined concrete cone & pullout failure at various embedment depths using threaded rods in dry / wet, cracked, C20/25 concrete. Temperature range -40°C to +80°C.

Property	Symbol	Linit					
	Symbol	Unit	M10	M12	M16	M20	M24
Effective Embedment Depth = 8d	h _{ef}	mm	80	96	128	160	192
Characteristic Load (Combined Concrete Cone & Pullout Failure)	N ⁰ _{Rk,p}	kN	11.31	16.29	28.95	40.21	57.91
Partial Safety Factor	γ_{Mc}	-	1.80	1.80	1.80	1.80	1.80
Effective Embedment Depth = 10d	h _{ef}	mm	100	120	160	200	240
Characteristic Load (Combined Concrete Cone & Pullout Failure)	N ⁰ _{Rk,p}	kN	14.14	20.36	36.19	50.27	72.38
Partial Safety Factor	γ _{Mc}	-	1.80	1.80	1.80	1.80	1.80
Effective Embedment Depth = STD	h _{ef}	mm	90	110	128	170	210
Characteristic Load (Combined Concrete Cone & Pullout Failure)	N ⁰ _{Rk,p}	kN	12.72	18.66	28.95	42.73	63.33
Partial Safety Factor	γ _{Mc}	-	1.80	1.80	1.80	1.80	1.80
Effective Embedment Depth = 12d	h _{ef}	mm	120	144	192	240	288
Characteristic Load (Combined Concrete Cone & Pullout Failure)	N ⁰ _{Rk,p}	kN	16.96	24.43	43.43	60.32	86.86
Partial Safety Factor	γ _{Mc}	-	1.80	1.80	1.80	1.80	1.80
Effective Embedment Depth = 14d	h _{ef}	mm	140	168	224	280	336
Characteristic Load (Combined Concrete Cone & Pullout Failure)	N ⁰ _{Rk,p}	kN	19.79	28.50	50.67	70.37	101.34
Partial Safety Factor	γ_{Mc}	-	1.80	1.80	1.80	1.80	1.80
Effective Embedment Depth = 16d	h _{ef}	mm	160	192	256	320	384
Characteristic Load (Combined Concrete Cone & Pullout Failure)	N ⁰ _{Rk,p}	kN	22.62	32.57	57.91	80.42	115.81
Partial Safety Factor	γ _{Mc}	-	1.80	1.80	1.80	1.80	1.80
Effective Embedment Depth = 18d	h _{ef}	mm	180	216	288	360	432
Characteristic Load (Combined Concrete Cone & Pullout Failure)	N ⁰ _{Rk,p}	kN	25.45	36.64	65.14	90.48	130.29
Partial Safety Factor	γ_{Mc}	-	1.80	1.80	1.80	1.80	1.80
Effective Embedment Depth = 20d	h _{ef}	mm	200	240	320	400	480
Characteristic Load (Combined Concrete Cone & Pullout Failure)	N ⁰ _{Rk,p}	kN	28.27	40.72	72.38	100.53	144.76
Partial Safety Factor	γ _{Mc}	-	1.80	1.80	1.80	1.80	1.80

1. Characteristic loads are valid for combined concrete cone and pullout failure as defined by TR029 only. All other failure modes, including steel failure, detailed in TR029 as well as including

combined effects of tension and shear, must be considered in accordance with TR029.

Characteristic loads are valid for single anchors without close edge, anchor spacing or eccentric loading considerations. Tabulated values are valid for temperture range -40°C to +80°C (Max LTT = +50°C; Max STT = +80°C).

Tabulated values are valid for the installation conditions stated. Other conditions, such as different temperature ranges, may affect the performance of the product. Long term temperatures are those that remain roughly constant over prolonged periods. Short term temperatures occur over brief intervals, eg: diurnal cycling. The compressive strength of the concrete (f_{excube}) is assumed to be 25 N/mm² for C20/25 concrete. Tabulated values assume that the geometry of the anchor(s) and concrete member is sufficient to avoid splitting failure.

7.

Product Data Sheet

Tension load calculations for combined concrete cone & pullout failure at 8d embedment depth

using threaded rods in dry / wet, cracked, C20/25 concrete. Temperature range -40°C to +80°C.

Droporty	Symbol	Linit					
Fioperty	Symbol	Unit	M10	M12	M16	M20	M24
Nominal Anchor Diameter	d	mm	10	12	16	20	24
Characteristic Bond Strength	$ au_{\scriptscriptstyleRk}$	N/mm ²	4.50	4.50	4.50	4.00	4.00
Effective Embedment Depth	h _{ef}	mm	80	96	128	160	192
Characteristic Load (Combined Concrete Cone and Pullout Failure)	N ⁰ _{Rk,p}	kN	11.31	16.29	28.95	40.21	57.91
Partial Safety Factor	Ύмс	-	1.80	1.80	1.80	1.80	1.80
Characteristic Anchor Spacing (Splitting Failure)	S _{cr,sp}	mm	240	288	384	480	576
Characteristic Edge Distance (Splitting Failure)	C _{cr,sp}	mm	120	144	192	240	288
Characteristic Anchor Spacing (Combined Concrete Cone and Pullout Failure)	S _{cr,Np}	mm	155	186	248	292	351
Characteristic Edge Distance (Combined Concrete Cone and Pullout Failure)	C _{cr.Np}	mm	77	93	124	146	175

Characteristic loads are valid for combined concrete cone and pullout failure as defined by TR029 only. All other failure modes, including steel failure, detailed in TR029 as well as including

combined effects of tension and shear, must be considered in accordance with TR029.

Characteristic loads are valid for single anchors without close edge, anchor spacing or eccentric loading considerations.

Tabulated values are valid for temperture range -40°C to +80°C (Max LTT = +50°C; Max STT = +80°C). Tabulated values are only valid for the installation conditions stated. Other conditions, such as different temperature ranges, may affect the performance of the product.

Long term temperatures are those that remain roughly constant over prolonged periods. Short term temperatures occur over brief intervals, eg: diurnal cycling

The compressive strength of the concrete (r_{occus}) is assumed to be 25 N/m² for C20/25 concrete. Tabulated values assume that the geometry of the anchor(s) and concrete member is sufficient to avoid splitting failure. 7.

Reduction factors for close edge: Combined concrete cone and pullout failure

	\land					
	ert	M10	M12	M16	M20	M24
	40	0.65				
	50	0.74	0.66	NOT	DEP	
	60	0.83	0.74		ERMIS	SID
E	65	0.88	0.77	0.65		INRTE
E)	70	0.92	0.81	0.68		
C	77	N/R	0.87	0.72		
a)	80		0.89	0.74	0.67	
ē	90		0.97	0.79	0.72	
tai	93		N/R	0.81	0.73	
)is	96			0.83	0.74	0.67
	100			0.85	0.76	0.68
ge	110			0.91	0.81	0.72
Щ	120			0.97	0.86	0.76
e	124			N/R	0.88	0.78
S	130				0.91	0.80
ū	140	No			0.97	0.85
	146		REDUC		N/R	0.87
	150		00	110N		0.89
	160					0.93
	170					0.98
	175					N/P

Tabulated values are only applicable for instances where combined concrete cone and pullout failure is the controlling failure mode as described by TR029. All other failure modes must be considered and different reduction

- factors may apply. Tabulated values are based on a single anchor with a single close edge.
- Tabulated values must not be used if multiple close edges exist. Anchors with geometry different to that defined in the above table must be considered separately and the tabulated values must not be used.
- Interpolation is allowed.
- Tabulated values assume that the geometry of the anchor(s) and concrete 5.
- member is sufficient to avoid splitting failure. Close edge distances must exceed or be equal to the minimum close edge distance (C_{min}) as defined in the ETA.

Reduction factors for anchor spacing: Combined concrete cone and pullout failure

				<u> </u>		
	$\land \land$					
	\square	M10	M12	M16	M20	M24
	40	0.72				
	50	0.75	0.72	-NOT		
	60	0.77	0.74		ERMIS	
	65	0.78	0.75	0.71		PIBLE
	70	0.80	0.76	0.71		
	80	0.82	0.78	0.73	0.71	
Ē	90	0.85	0.80	0.75	0.73	
E	96	0.86	0.82	0.76	0.73	0.70
L.	100	0.87	0.83	0.76	0.74	0.71
S	110	0.89	0.85	0.78	0.75	0.72
e S	120	0.92	0.87	0.80	0.77	0.73
ane	130	0.94	0.89	0.81	0.78	0.74
sta	140	0.97	0.91	0.83	0.80	0.76
Ö	150	0.99	0.93	0.85	0.81	0.77
D	155	N/R	0.94	0.85	0.82	0.77
.H	160		0.95	0.86	0.82	0.78
)a(170		0.97	0.88	0.84	0.79
м М	180		0.99	0.89	0.85	0.80
л С	186		N/R	0.90	0.86	0.81
- Ĕ	190			0.91	0.86	0.82
-UC	200			0.93	0.88	0.83
4	220			0.96	0.90	0.85
	240			0.99	0.93	0.87
	248			N/R	0.94	0.88
	260				0.96	0.90
	280	No	RED		0.98	0.92
	292		EDUC	TION	N/R	0.93
	300			NON		0.94
	325					0.97
	351					N/R

Tabulated values are only applicable for instances where combined concrete cone and pullout failure is the controlling failure mode as described by TR029. All other failure modes must be considered and different reduction factors may apply.

- ² Tabulated values are based on a group of 2 anchors with the geometry defined by "S" and "S_{erNp}" but without close edge considerations.
 ³ Anchors with geometry different to that defined in the above table must be considered separately and the tabulated values must not be used.

⁴ Interpolation is allowed.

- ^{5.} Tabulated values assume that the geometry of the anchor(s) and concrete member is sufficient to avoid splitting failure
- ⁶ Anchor spacing distances must exceed or be equal to the minimum anchor spacing (S_{min}) as defined in the ETA.

Product Data Sheet

Tension load calculations for combined concrete cone & pullout failure at std embedment depth

using threaded rods in dry / wet, cracked, C20/25 concrete. Temperature range -40°C to +80°C.

Broporty	Symbol	Linit					
Fioperty	Symbol	Unit	M10	M12	M16	M20	M24
Nominal Anchor Diameter	d	mm	10	12	16	20	24
Characteristic Bond Strength	$ au_{\scriptscriptstyleRk}$	N/mm ²	4.50	4.50	4.50	4.00	4.00
Effective Embedment Depth	h _{ef}	mm	90	110	128	170	210
Characteristic Load (Combined Concrete Cone and Pullout Failure)	N ⁰ _{Rk,p}	kN	12.72	18.66	28.95	42.73	63.33
Partial Safety Factor	Ύмс	-	1.80	1.80	1.80	1.80	1.80
Characteristic Anchor Spacing (Splitting Failure)	S _{cr,sp}	mm	270	330	384	510	630
Characteristic Edge Distance (Splitting Failure)	C _{cr,sp}	mm	135	165	192	255	315
Characteristic Anchor Spacing (Combined Concrete Cone and Pullout Failure)	S _{cr,Np}	mm	155	186	248	292	351
Characteristic Edge Distance (Combined Concrete Cone and Pullout Failure)	C _{cr,Np}	mm	77	93	124	146	175

Characteristic loads are valid for combined concrete cone and pullout failure as defined by TR029 only. All other failure modes, including steel failure, detailed in TR029 as well as including

combined effects of tension and shear, must be considered in accordance with TR029.

Characteristic loads are valid for single anchors without close edge, anchor spacing or eccentric loading considerations.

Tabulated values are valid for temperture range -40°C to +80°C (Max LTT = +50°C; Max STT = +80°C). Tabulated values are only valid for the installation conditions stated. Other conditions, such as different temperature ranges, may affect the performance of the product.

Long term temperatures are those that remain roughly constant over prolonged periods. Short term temperatures occur over brief intervals, eg: diurnal cycling.

⁷ Tabulated values assume that the geometry of the anchor(s) and concrete member is sufficient to avoid splitting failure

Reduction factors for close edge: Combined concrete cone and pullout failure

	ert	M10	M12	M16	M20	M24
	45	0.69				
	50	0.74		NOT		
	55	0.78	0.70		ERMIS	
	60	0.83	0.74			SIBLE
E	65	0.88	0.77	0.65		
E)	70	0.92	0.81	0.68		
O	77	N/R	0.87	0.72		
αĴ	80		0.89	0.74		
õ	85		0.93	0.76	0.69	
tai	90		0.97	0.79	0.72	
Jis	93		N/R	0.81	0.73	
	100			0.85	0.76	
ğ	105			0.88	0.79	0.70
ы	110			0.91	0.81	0.72
e U	120			0.97	0.86	0.76
os	124			N/R	0.88	0.78
Ö	130				0.91	0.80
	140	No			0.97	0.85
	146		REDUC		N/R	0.87
	150		-00	TION -		0.89
	160					0.93
	170					0.98
	175					I N/R

Tabulated values are only applicable for instances where combined concrete cone and pullout failure is the controlling failure mode as described by TR029. All other failure modes must be considered and different reduction factors may apply.

Tabulated values are based on a single anchor with a single close edge. Tabulated values must not be used if multiple close edges exist. 2.

Anchors with geometry different to that defined in the above table must be

considered separately and the tabulated values must not be used. Interpolation is allowed.

Tabulated values assume that the geometry of the anchor(s) and concrete member is sufficient to avoid splitting failure.

Close edge distances must exceed or be equal to the minimum close edge distance (C_{\min}) as defined in the ETA.

Reduction factors for anchor spacing: Combined concrete cone and pullout failure

				<u> </u>		
	\searrow	M10	M12	M16	M20	M24
	45	0.74				
	50	0.75		No		
	55	0.76	0.73	TON	PFD	
	60	0.77	0.74		-KMIS,	SIRI
	65	0.79	0.75	0.71		ULE
	70	0.80	0.77	0.71		
	80	0.82	0.79	0.73		
L.	85	0.84	0.80	0.74	0.72	
S	90	0.85	0.81	0.75	0.73	
l g	100	0.87	0.83	0.76	0.74	
ŭ	105	0.88	0.84	0.77	0.75	0.72
sta	120	0.92	0.87	0.80	0.77	0.74
Ö	140	0.97	0.91	0.83	0.80	0.76
D	155	N/R	0.94	0.85	0.82	0.78
Ei	160		0.95	0.86	0.82	0.78
)a(180		0.99	0.89	0.85	0.81
S	186		N/R	0.90	0.86	0.81
5	200			0.93	0.88	0.83
Ц Ц	220			0.96	0.91	0.85
Ğ	240			0.99	0.93	0.88
<	248			N/R	0.94	0.89
	260				0.96	0.90
	280	NO	REP		0.98	0.92
	292		TEDU(CTION	N/R	0.94
	300			NON		0.94
	320					0.97
	340					0.99
	351					N/R

Tabulated values are only applicable for instances where combined concrete cone and pullout failure is the controlling failure mode as described by TR029. All other failure modes must be considered and different reduction factors may apply.

- ² Tabulated values are based on a group of 2 anchors with the geometry
- defined by "S" and "S_{crNp}" but without close edge considerations. ³ Anchors with geometry different to that defined in the above table must be considered separately and the tabulated values must not be used.
- Interpolation is allowed.
- ^{5.} Tabulated values assume that the geometry of the anchor(s) and concrete member is sufficient to avoid splitting failure.

⁶ Anchor spacing distances must exceed or be equal to the minimum anchor spacing (S_{min}) as defined in the ETA.

Product Data Sheet

Tension load calculations for combined concrete cone & pullout failure at 20d embedment depth

using threaded rods in dry / wet, cracked, C20/25 concrete. Temperature range -40°C to +80°C.

Droporty	Cumbal	Linit							
Property	Symbol	Unit	M10	M12	M16	M20	M24		
Nominal Anchor Diameter	d	mm	10	12	16	20	24		
Characteristic Bond Strength	$ au_{\scriptscriptstyle Rk}$	N/mm ²	4.50	4.50	4.50	4.00	4.00		
Effective Embedment Depth	h _{ef}	mm	200	240	320	400	480		
Characteristic Load (Combined Concrete Cone and Pullout Failure)	N ⁰ _{Rk,p}	kN	28.27	40.72	72.38	100.53	144.76		
Partial Safety Factor	Ύмс	-	1.80	1.80	1.80	1.80	1.80		
Characteristic Anchor Spacing (Splitting Failure)	S _{cr,sp}	mm	600	720	960	1200	1440		
Characteristic Edge Distance (Splitting Failure)	C _{cr,sp}	mm	300	360	480	600	720		
Characteristic Anchor Spacing (Combined Concrete Cone and Pullout Failure)	S _{cr,Np}	mm	155	186	248	292	351		
Characteristic Edge Distance (Combined Concrete Cone and Pullout Failure)	C _{cr.Np}	mm	77	93	124	146	175		

Characteristic loads are valid for combined concrete cone and pullout failure as defined by TR029 only. All other failure modes, including steel failure, detailed in TR029 as well as including

combined effects of tension and shear, must be considered in accordance with TR029.

Characteristic loads are valid for single anchors without close edge, anchor spacing or eccentric loading considerations.

Tabulated values are valid for temperture range -40°C to +80°C (Max LTT = $+50^{\circ}$ C; Max STT = +80°C). Tabulated values are only valid for the installation conditions stated. Other conditions, such as different temperature ranges, may affect the performance of the product.

Long term temperatures are those that remain roughly constant over prolonged periods. Short term temperatures occur over brief intervals, eg: diurnal cycling

The compressive strength of the concrete ($f_{k,cube}$) is assumed to be 25 N/ma² for C20/25 concrete. Tabulated values assume that the geometry of the anchor(s) and concrete member is sufficient to avoid splitting failure.

Reduction factors for close edge: Combined concrete cone and pullout failure

Tabulated values are only applicable for instances where combined concrete cone and pullout failure is the controlling failure mode as described by TR029. All other failure modes must be considered and different reduction factors may apply.

- Tabulated values are based on a single anchor with a single close edge
- Tabulated values must not be used if multiple close edges exist
- Anchors with geometry different to that defined in the above table must be considered separately and the tabulated values must not be used. Interpolation is allowed.
- 5. Tabulated values assume that the geometry of the anchor(s) and concrete member is sufficient to avoid splitting failure.
- Close edge distances must exceed or be equal to the minimum close edge distance (C_{min}) as defined in the ETA.

Reduction factors for anchor spacing: Combined concrete cone and pullout failure

Tabulated values are only applicable for instances where combined concrete cone and pullout failure is the controlling failure mode as described by TR029. All other failure modes must be considered and different reduction factors may apply.

- Tabulated values are based on a group of 2 anchors with the geometry defined by "S" and " $S_{cr,bp}$ " but without close edge considerations. 2.
- Anchors with geometry different to that defined in the above table must be considered separately and the tabulated values must not be used.
- Interpolation is allowed.
- 5. Tabulated values assume that the geometry of the anchor(s) and concrete member is sufficient to avoid splitting failure.
- ⁶ Anchor spacing distances must exceed or be equal to the minimum anchor spacing (S_{min}) as defined in the ETA.

Product Data Sheet

Using עוגן כימי W200 with Reinforcing Bars Combined pullout and £..... ----

concrete cone failure in non-cracked concrete C20/25											
Size			Ø8mm	Ø10mm	Ø12mm	Ø16mm	Ø20mm	Ø25mm	Ø32mm		
Characteristic bond resistance in non-cracked concrete											
Characteristic bond resistance dry/wet concrete	$ au_{\scriptscriptstyle Rk}$	[N/mm ²]	11	9.5	9.5	9.0	8.5	8.5	5.5		
Partial safety factor	γ _{мс}	[-]				1.8					

Tension load calculations for combined concrete cone & pullout failure at various embedment depths using reinforcing bars in dry / wet, uncracked, C20/25 concrete. Temperature range -40°C to +80°C.

Property	Symbol	LInit	Anchor Size							
	Cymbol		Ø8mm	Ø10mm	Ø12mm	Ø16mm	Ø20mm	Ø25mm	Ø32mm	
Effective Embedment Depth = 8d	h _{ef}	mm	64	80	96	128	160	200	256	
Characteristic Load (Combined Concrete Cone & Pullout Failure)	N ⁰ _{Rk,p}	kN	17.69	23.88	34.38	57.91	85.45	133.52	141.55	
Partial Safety Factor	γ _{Мс}	-	1.80	1.80	1.80	1.80	1.80	1.80	1.80	
Effective Embedment Depth = 10d	h _{ef}	mm	80	100	120	160	200	250	320	
Characteristic Load (Combined Concrete Cone & Pullout Failure)	N ⁰ _{Rk,p}	kN	22.12	29.85	42.98	72.38	106.81	166.90	176.93	
Partial Safety Factor	γ _{Мс}	-	1.80	1.80	1.80	1.80	1.80	1.80	1.80	
Effective Embedment Depth = STD	h _{ef}	mm	80	90	110	128	170	210	300	
Characteristic Load (Combined Concrete Cone & Pullout Failure)	N⁰ _{Rk,p}	kN	22.12	26.86	39.40	57.91	90.79	140.19	165.88	
Partial Safety Factor	γ _{Мс}	-	1.80	1.80	1.80	1.80	1.80	1.80	1.80	
Effective Embedment Depth = 12d	h _{ef}	mm	96	120	144	192	240	300	384	
Characteristic Load (Combined Concrete Cone & Pullout Failure)	N⁰ _{Rk,p}	kN	26.54	35.81	51.57	86.86	128.18	200.28	212.32	
Partial Safety Factor	γ _{Мс}	-	1.80	1.80	1.80	1.80	1.80	1.80	1.80	
Effective Embedment Depth = 14d	h _{ef}	mm	112	140	168	224	280	350	448	
Characteristic Load (Combined Concrete Cone & Pullout Failure)	N⁰ _{Rk,p}	kN	30.96	41.78	60.17	101.34	149.54	233.66	247.71	
Partial Safety Factor	γмс	-	1.80	1.80	1.80	1.80	1.80	1.80	1.80	
Effective Embedment Depth = 16d	h _{ef}	mm	128	160	192	256	320	400	512	
Characteristic Load (Combined Concrete Cone & Pullout Failure)	N⁰ _{Rk,p}	kN	35.39	47.75	68.76	115.81	170.90	267.04	283.10	
Partial Safety Factor	γ _{Мс}	-	1.80	1.80	1.80	1.80	1.80	1.80	1.80	
Effective Embedment Depth = 18d	h _{ef}	mm	144	180	216	288	360	450	576	
Characteristic Load (Combined Concrete Cone & Pullout Failure)	N⁰ _{Rk,p}	kN	39.81	53.72	77.36	130.29	192.27	300.41	318.48	
Partial Safety Factor	γ _{Мс}	-	1.80	1.80	1.80	1.80	1.80	1.80	1.80	
Effective Embedment Depth = 20d	h _{ef}	mm	160	200	240	320	400	500	640	
Characteristic Load (Combined Concrete Cone & Pullout Failure)	N ⁰ _{Rk,p}	kN	44.23	59.69	85.95	144.76	213.63	333.79	353.87	
Partial Safety Factor	γмс	-	1.80	1.80	1.80	1.80	1.80	1.80	1.80	

^{1.} Characteristic loads are valid for combined concrete cone and pullout failure as defined by TR029 only. All other failure modes, including steel failure, detailed in TR029 as well as including combined effects of tension and shear, must be considered in accordance with TR029.

Complete strets of tension and shear, must be considered in accordance with TRU29.
 Characteristic loads are valid for single anchors without close edge, anchor spacing or eccentric loading considerations.
 Tabulated values are valid for temperture range -40°C to +80°C (Max LTT = +50°C; Max STT = +80°C).
 Tabulated values are only valid for the installation conditions stated. Other conditions, such as different temperature ranges, may affect the performance of the product.
 Long term temperatures are those that remain roughly constant over prolonged periods. Short term temperatures occur over brief intervals, eg: diurnal cycling.
 The compressive strength of the concrete (f_{excube}) is assumed to be 25 N/mm² for C20/25 concrete.
 Tabulated values assume that the geometry of the anchor(s) and concrete member is sufficient to avoid splitting failure.

Product Data Sheet

Tension load calculations for combined concrete cone & pullout failure at 8d embedment depth

using reinforcing bars in dry / wet, uncracked, C20/25 concrete. Temperature range -40°C to +80°C.

Broporty	Symbol			Anchor Size							
Fioperty	Symbol	Unit	Ø8mm	Ø10mm	Ø12mm	Ø16mm	Ø20mm	Ø25mm	Ø32mm		
Nominal Anchor Diameter	d	mm	8	10	12	16	20	25	32		
Characteristic Bond Strength	$ au_{\scriptscriptstyleRk}$	N/mm ²	11.00	9.50	9.50	9.00	8.50	8.50	5.50		
Effective Embedment Depth	h _{ef}	mm	64	80	96	128	160	200	256		
Characteristic Load (Combined Concrete Cone and Pullout Failure)	N ⁰ _{Rk,p}	kN	17.69	23.88	34.38	57.91	85.45	133.52	141.55		
Partial Safety Factor	γмс	-	1.80	1.80	1.80	1.80	1.80	1.80	1.80		
Characteristic Anchor Spacing (Splitting Failure)	S _{cr,sp}	mm	192	240	288	384	480	600	768		
Characteristic Edge Distance (Splitting Failure)	C _{cr,sp}	mm	96	120	144	192	240	300	384		
Characteristic Anchor Spacing (Combined Concrete Cone and Pullout Failure)	S _{cr,Np}	mm	192	225	270	351	426	532	548		
Characteristic Edge Distance (Combined Concrete Cone and Pullout Failure)	C _{cr,Np}	mm	96	113	135	175	213	266	274		

Characteristic loads are valid for combined concrete cone and pullout failure as defined by TR029 only. All other failure modes, including steel failure, detailed in TR029 as well as including

combined effects of tension and shear, must be considered in accordance with TR029.

Characteristic loads are valid for single anchors without close edge, anchor spacing or eccentric loading considerations.

Tabulated values are valid for temperture range -40°C to +80°C (Max LTT = +50°C; Max STT = +80°C). Tabulated values are only valid for the installation conditions stated. Other conditions, such as different temperature ranges, may affect the performance of the product.

Long term temperatures are those that remain roughly constant over prolonged periods. Short term temperatures occur over brief intervals, eg: diurnal cycling

The compressive strength of the concrete (f_{ck,cub}) is assumed to be 25 N/m² for C20/25 concrete.
 Tabulated values assume that the geometry of the anchor(s) and concrete member is sufficient to avoid splitting failure.

Reduction factors for close edge: Combined concrete cone and pullout failure

	\bigtriangledown							
	\searrow	Ø8mm	Ø10mm	Ø12mm	Ø16mm	Ø20mm	Ø25mm	Ø32mm
	35	0.55						
	40	0.58	0.55		No			
	50	0.65	0.60	0.56	- 10	PFD		
	60	0.72	0.66	0.60		-14/	ISSIDI	
	65	0.76	0.69	0.63	0.56			E
	70	0.79	0.72	0.65	0.57			
	80	0.87	0.78	0.70	0.61	0.56		
Ê	90	0.95	0.85	0.75	0.65	0.59		
Ĩ	96	N/R	0.89	0.78	0.67	0.61		
- -	100		0.91	0.80	0.68	0.62	0.56	
0	110		0.98	0.86	0.72	0.65	0.58	
e	113		N/R	0.87	0.73	0.66	0.59	
an.	120			0.91	0.76	0.68	0.68 0.61	
sta	130			0.97	0.80	0.71	0.63	0.62
Ō	135			N/R	0.82	0.73	0.64	0.63
ē	140				0.85	0.74	0.65	0.64
ôp	150				0.89	0.78	0.68	0.67
Ш	160				0.93	0.81	0.70	0.69
se	170				0.98	0.84	0.73	0.72
<u> </u>	175				N/R	0.86	0.74	0.73
0	180					0.88	0.76	0.74
	190					0.92	0.78	0.77
	200		NOPE			0.95	0.81	0.79
	210		KE	DUCT		0.99	0.84	0.82
	213				2N	N/R	0.85	0.83
	220						0.87	0.85
	240						0.92	0.90
	260						0.98	0.96
	266						N/R	0.98
	274							N/R

Tabulated values are only applicable for instances where combined concrete cone and pullout failure is the controlling failure mode as described by TR029. All other failure modes must be considered and different reduction factors may apply

Tabulated values are based on a single anchor with a single close edge. Tabulated values must not be used if multiple close edges exist.

Anchors with geometry different to that defined in the above table must be considered separately and the tabulated values must not be used.

Interpolation is allowed.

5. Tabulated values assume that the geometry of the anchor(s) and concrete member is sufficient to avoid splitting failure

Close edge distances must exceed or be equal to the minimum close edge distance (C_{min}) as defined in the ETA.

Reduction factors for anchor spacing: Combined concrete cone and pullout failure

	\searrow			An	chor Si	ze		
	\searrow	Ø8mm	Ø10mm	Ø12mm	Ø16mm	Ø20mm	Ø25mm	Ø32mm
	35	0.65						
	40	0.66	0.65					
	50	0.69	0.67	0.65		UT PF	Dan	
	60	0.71	0.69	0.66			MISS	RI
	65	0.72	0.70	0.67	0.63			PLE
	70	0.73	0.71	0.68	0.64			
E	80	0.75	0.73	0.69	0.65	0.63		
<u> </u>	90	0.78	0.75	0.71	0.67	0.64		
S	100	0.80	0.77	0.73	0.68	0.65	0.61	
ຄົ	125	0.85	0.82	0.77	0.71	0.68	0.63	
ЭС	130	0.86	0.82	0.78	0.72	0.68	0.63	0.68
tar	150	0.91	0.86	0.81	0.74	0.70	0.65	0.69
is	175	0.96	0.91	0.85	0.78	0.73	0.67	0.71
	192	N/R	0.94	0.88	0.80	0.75	0.69	0.72
ů	200		0.95	0.89	0.81	0.76	0.70	0.73
aci	225		N/R	0.93	0.84	0.78	0.72	0.75
ğ	250			0.97	0.87	0.81	0.74	0.77
5	270			N/R	0.90	0.83	0.76	0.79
p	275				0.90	0.84	0.77	0.79
jc l	300				0.94	0.87	0.79	0.81
Ar	325				0.97	0.89	0.81	0.83
	351				N/R	0.92	0.84	0.85
	375					0.95	0.86	0.87
	400					0.97	0.88	0.89
	426		VO REP			N/R	0.90	0.91
	450		- VEL	UCTIC			0.93	0.93
	500				N		0.97	0.96
	532						N/R	0.99
	548							N/R

Tabulated values are only applicable for instances where combined concrete cone and pullout failure is the controlling failure mode as described by TR029. All other

failure modes must be considered and different reduction factors may apply. Tabulated values are based on a group of 2 anchors with the geometry defined by

"S" and "S_{crNp}" but without close edge considerations. ³ Anchors with geometry different to that defined in the above table must be considered separately and the tabulated values must not be used.

Interpolation is allowed. ⁵ Tabulated values assume that the geometry of the anchor(s) and concrete

member is sufficient to avoid splitting failure. ⁶ Anchor spacing distances must exceed or be equal to the minimum anchor spacing (S_{min}) as defined in the ETA.

Product Data Sheet

Tension load calculations for combined concrete cone & pullout failure at std embedment depth

using reinforcing bars in dry / wet, uncracked, C20/25 concrete. Temperature range -40°C to +80°C.

Broporty	Symbol	Linit			Ar	hchor Si	ize		
Fioperty	Symbol	Unit	Ø8mm	Ø10mm	Ø12mm	Ø16mm	Ø20mm	Ø25mm	Ø32mm
Nominal Anchor Diameter	d	mm	8	10	12	16	20	25	32
Characteristic Bond Strength	$ au_{\scriptscriptstyleRk}$	N/mm ²	11.00	9.50	9.50	9.00	8.50	8.50	5.50
Effective Embedment Depth	h _{ef}	mm	80	90	110	128	170	210	300
Characteristic Load (Combined Concrete Cone and Pullout Failure)	N ⁰ _{Rk,p}	kN	22.12	26.86	39.40	57.91	90.79	140.19	165.88
Partial Safety Factor	Ύмс	-	1.80	1.80	1.80	1.80	1.80	1.80	1.80
Characteristic Anchor Spacing (Splitting Failure)	S _{cr,sp}	mm	240	270	330	384	510	630	900
Characteristic Edge Distance (Splitting Failure)	C _{cr,sp}	mm	120	135	165	192	255	315	450
Characteristic Anchor Spacing (Combined Concrete Cone and Pullout Failure)	S _{cr,Np}	mm	194	225	270	351	426	532	548
Characteristic Edge Distance (Combined Concrete Cone and Pullout Failure)	C _{cr,Np}	mm	97	113	135	175	213	266	274

Characteristic loads are valid for combined concrete cone and pullout failure as defined by TR029 only. All other failure modes, including steel failure, detailed in TR029 as well as including

combined effects of tension and shear, must be considered in accordance with TR029.

Characteristic loads are valid for single anchors without close edge, anchor spacing or eccentric loading considerations. Tabulated values are valid for temperture range -40°C to +80°C (Max LTT = +50°C; Max STT = +80°C).

Tabulated values are only valid for the installation conditions stated. Other conditions, such as different temperature ranges, may affect the performance of the product. Long term temperatures are those that remain roughly constant over prolonged periods. Short term temperatures occur over brief intervals, eg: diurnal cycling.

The compressive strength of the concrete (f_{ck.cube}) is assumed to be 25 N/mm² for C20/25 concrete.
 Tabulated values assume that the geometry of the anchor(s) and concrete member is sufficient to avoid splitting failure.

Reduction factors for close edge: Combined concrete cone and pullout failure

	\smallsetminus							
	\searrow	Ø8mm	Ø10mm	Ø12mm	Ø16mm	Ø20mm	Ø25mm	Ø32mm
	40	0.58						
	45	0.61	0.57					
	50	0.65	0.60			TPER		
	55	0.68	0.63	0.58		· CR	MISSU	
	60	0.72	0.66	0.60			-016	LE
	65	0.75	0.69	0.63	0.56			
	70	0.79	0.72	0.65	0.57			
Ê	80	0.87	0.78	0.70	0.61			
Ľ	85	0.90	0.81	0.72	0.63	0.57		
5	90	0.94	0.85	0.75	0.65	0.59		
0	97	N/R	0.89	0.79	0.67	0.61		
é	100		0.91	0.80	0.68	0.62		
u U	105		0.95	0.83	0.70	0.63	0.57	
sta	110		0.98	0.86	0.72	0.65	0.58	
ö	113		N/R	0.87	0.73	0.66	0.59	
Ð	120			0.91	0.76	0.68	0.61	
бр	130			0.97	0.80	0.71	0.63	
Ш	135			N/R	0.82	0.73	0.64	
se	140				0.85	0.74	0.65	
0	150				0.89	0.78	0.68	0.67
0	160				0.93	0.81	0.70	0.69
	170				0.98	0.84	0.73	0.72
	175				N/R	0.86	0.74	0.73
	180		RED	UCT		0.88	0.76	0.74
	190			0110	N	0.92	0.78	0.77
	200					0.95	0.81	0.79
	213					N/R	0.85	0.83
	250						0.95	0.93
	266						N/R	0.98
	274							N/R

Tabulated values are only applicable for instances where combined concrete cone and pullout failure is the controlling failure mode as described by TR029. All other failure modes must be considered and different reduction factors may apply

Tabulated values are based on a single anchor with a single close edge. Tabulated values must not be used if multiple close edges exist. З.

Anchors with geometry different to that defined in the above table must be considered separately and the tabulated values must not be used.

Interpolation is allowed.

Tabulated values assume that the geometry of the anchor(s) and concrete member is sufficient to avoid splitting failure.

Close edge distances must exceed or be equal to the minimum close edge distance (C_{min}) as defined in the ETA.

Reduction factors for anchor spacing: Combined concrete cone and pullout failure

			Anchor Size									
	\searrow	Ø8mm	Ø10mm	Ø12mm	Ø16mm	Ø20mm	Ø25mm	Ø32mm				
	40	0.67										
	45	0.68	0.67									
	50	0.70	0.68			UT PF	De					
	55	0.71	0.69	0.66			MISS					
	60	0.72	0.70	0.67				PLE				
	65	0.73	0.71	0.68	0.63							
E	70	0.74	0.72	0.69	0.64							
<u> </u>	80	0.76	0.73	0.70	0.65							
S	85	0.77	0.74	0.71	0.66	0.64						
a)	90	0.78	0.75	0.72	0.67	0.64						
ĕ	100	0.80	0.77	0.73	0.68	0.65						
tar	105	0.81	0.78	0.74	0.69	0.66	0.62					
is.	125	0.86	0.82	0.77	0.71	0.68	0.63					
	150	0.91	0.87	0.81	0.74	0.71	0.66	0.70				
ĉ	175	0.96	0.91	0.85	0.78	0.73	0.68	0.72				
g	194	N/R	0.94	0.88	0.80	0.75	0.70	0.73				
ğ	200		0.96	0.89	0.81	0.76	0.70	0.74				
U U	225		N/R	0.93	0.84	0.79	0.72	0.76				
ē	250			0.97	0.87	0.81	0.75	0.78				
jc j	270			N/R	0.90	0.84	0.76	0.79				
A	275				0.90	0.84	0.77	0.80				
	300		No		0.94	0.87	0.79	0.81				
	351		V REI		N/R	0.92	0.84	0.85				
	400			UCTIC	DN	0.97	0.88	0.89				
	426					N/R	0.90	0.91				
	450						0.93	0.93				
	500						0.97	0.96				
	532						N/R	0.99				
	548							N/R				

Tabulated values are only applicable for instances where combined concrete cone and pullout failure is the controlling failure mode as described by TR029. All other

Tabulated values are based on a group of 2 anchors with the geometry defined by "S" and "S_{cr,Np}" but without close edge considerations.

Anchors with geometry different to that defined in the above table must be considered separately and the tabulated values must not be used

Interpolation is allowed.

Tabulated values assume that the geometry of the anchor(s) and concrete member is sufficient to avoid splitting failure

Anchor spacing distances must exceed or be equal to the minimum anchor spacing (S_{min}) as defined in the ETA.

Product Data Sheet

Tension load calculations for combined concrete cone & pullout failure at 20d embedment depth using reinforcing bars in dry / wet, uncracked, C20/25 concrete. Temperature range -40°C to +80°C.

Property		Linit	Anchor Size							
Fioperty	Symbol		Ø8mm	Ø10mm	Ø12mm	Ø16mm	Ø20mm	Ø25mm	Ø32mm	
Nominal Anchor Diameter	d	mm	8	10	12	16	20	25	32	
Characteristic Bond Strength	$ au_{\scriptscriptstyleRk}$	N/mm ²	11.00	9.50	9.50	9.00	8.50	8.50	5.50	
Effective Embedment Depth	h _{ef}	mm	160	200	240	320	400	500	640	
Characteristic Load (Combined Concrete Cone and Pullout Failure)	N ⁰ _{Rk,p}	kN	44.23	59.69	85.95	144.76	213.63	333.79	353.87	
Partial Safety Factor	γ _{Мс}	-	1.80	1.80	1.80	1.80	1.80	1.80	1.80	
Characteristic Anchor Spacing (Splitting Failure)	S _{cr,sp}	mm	480	600	720	960	1200	1500	1920	
Characteristic Edge Distance (Splitting Failure)	C _{cr,sp}	mm	240	300	360	480	600	750	960	
Characteristic Anchor Spacing (Combined Concrete Cone and Pullout Failure)	S _{cr,Np}	mm	194	225	270	351	426	532	548	
Characteristic Edge Distance (Combined Concrete Cone and Pullout Failure)	C _{cr,Np}	mm	97	113	135	175	213	266	274	

Characteristic loads are valid for combined concrete cone and pullout failure as defined by TR029 only. All other failure modes, including steel failure, detailed in TR029 as well as including

combined effects of tension and shear, must be considered in accordance with TR029.

Characteristic loads are valid for single anchors without close edge, anchor spacing or eccentric loading considerations.

Tabulated values are valid for temperture range -40°C to +80°C (Max LTT = $+50^{\circ}$ C; Max STT = +80°C). Tabulated values are only valid for the installation conditions stated. Other conditions, such as different temperature ranges, may affect the performance of the product.

Long term temperatures are those that remain roughly constant over prolonged periods. Short term temperatures occur over brief intervals, eg: diurnal cycling

The compressive strength of the concrete (r_{occus}) is assumed to be 25 N/m² for C20/25 concrete. Tabulated values assume that the geometry of the anchor(s) and concrete member is sufficient to avoid splitting failure.

Reduction factors for close edge: Combined concrete cone and pullout failure

Tabulated values are only applicable for instances where combined concrete cone and pullout failure is the controlling failure mode as described by TR029. All other failure modes must be considered and different reduction factors may apply

Tabulated values are based on a single anchor with a single close edge. Tabulated values must not be used if multiple close edges exist.

Anchors with geometry different to that defined in the above table must be considered separately and the tabulated values must not be used.

Interpolation is allowed.

5. Tabulated values assume that the geometry of the anchor(s) and concrete member is sufficient to avoid splitting failure

Close edge distances must exceed or be equal to the minimum close edge distance (C_{min}) as defined in the ETA.

Reduction factors for anchor spacing: Combined concrete cone and pullout failure

	<u> </u>									
	\sim	Anchor Size								
	ert	Ø8mm	Ø10mm	Ø12mm	Ø16mm	Ø20mm	Ø25mm	Ø32mm		
	80	0.78								
	90	0.80								
	100	0.82	0.79		NC	To				
	120	0.86	0.83	0.79		PER	MISO			
5	140	0.90	0.86	0.82			1081E	BLF		
S	160	0.94	0.90	0.85	0.79					
l é	180	0.97	0.93	0.88	0.81					
ŭ	194	N/R	0.95	0.90	0.83					
sta	200		0.96	0.90	0.84	0.79				
Ē	225		N/R	0.94	0.86	0.82				
D	250			0.97	0.89	0.84	0.79			
i i	270		1	N/R	0.91	0.86	0.80			
a a	275				0.92	0.86	0.81			
l N	300				0.95	0.89	0.83			
5	320				0.97	0.91	0.84	0.85		
Ë L	351				N/R	0.93	0.86	0.87		
ğ	400					0.98	0.90	0.90		
◄	426		NORE			N/R	0.92	0.92		
	450			UUCTI			0.94	0.94		
	500						0.98	0.97		
	532						N/R	0.99		
	548							N/R		

¹ Tabulated values are only applicable for instances where combined concrete cone and pullout failure is the controlling failure mode as described by TR029. All other failure modes must be considered and different reduction factors may apply.

Tabulated values are based on a group of 2 anchors with the geometry defined by "S" and "S_{cr/p}" but without close edge considerations.

Anchors with geometry different to that defined in the above table must be considered separately and the tabulated values must not be used.

Interpolation is allowed.

5. Tabulated values assume that the geometry of the anchor(s) and concrete member is sufficient to avoid splitting failure. ⁶ Anchor spacing distances must exceed or be equal to the minimum anchor

spacing (S_{min}) as defined in the ETA.

Product Data Sheet

Using Using with Post-installed Rebar Connections

Installation parameters

Rebar			Cleaning	Min.	Min.	Max.	
Diameter (mm)	f _{y.k} (N/mm2)	Urill Hole (mm)	Brush* (mm)	Anchorage Length (mm)	Lap/Splice Length (mm)	Embedment Depth (mm)	
8	500	12 (10)	14	114	200	400	
10	500	14 (12)	14	142	200	500	
12	500	16	19	171	200	600	
14	500	18	22	199	210	700	
16	500	20	22	227	240	800	
20	500	25	29	284	300	1000	
25	500	32	40	355	375	1000	

Note: Post-installed rebar connection data is valid for EASF-V and EASF-VE only.

* Values in parenthesis represent alternative drilling diameters.

Design bond strength values

Design values of the ultimate bond resistance f_{bd} in N/mm² for rotary hammer drilling and compressed air drilling for good bond conditions.

Deber Ø	Concrete Class										
(mm)	C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60		
8											
10											
12						24	27	4.0	4.3		
14	1.6	2.0	2.3	2.7	3.0	3.4	3.7				
16											
20								3.7			
25							3	.0			

Note: Post-installed rebar connection data is valid for EASF-V and EASF-VE only.

Tabulated values for f_{bd} are valid for good bond conditions according to EN 1992-1-1. For all other bond conditions multiply the values for f_{bd} by 0.7.

Product Data Sheet

Important Notes

Use in Porous Substrates

This bonded anchor is not intended for use as a cosmetic or decorative product. When anchoring into porous or reconstituted stone it is recommended that technical assistance is sought. Due to the nature of the product, migration of the monomer in the resin may cause staining in certain materials. If you are still uncertain, it is advisable to test the resin by applying it in a small, discrete area and testing before using the resin on the project.

Important Note

Whilst all reasonable care is taken in compiling technical data on the Company's products, all recommendations or suggestions regarding the use of such products are made without guarantee, since the conditions of use are beyond the control of the Company. It is the customer's responsibility to satisfy himself that each product is fit for the purpose for which he intends to use it, that the actual conditions of use are suitable and that, in the light of our continual research and development programme the information relating to each product has not been superseded.

Manufactured for Elram Professional Adhesives Ltd in the United Kingdom Website: www.2kps.net

WWW.DVAKIM.COM